89 research outputs found

    On the strengths of connectivity and robustness in general random intersection graphs

    Full text link
    Random intersection graphs have received much attention for nearly two decades, and currently have a wide range of applications ranging from key predistribution in wireless sensor networks to modeling social networks. In this paper, we investigate the strengths of connectivity and robustness in a general random intersection graph model. Specifically, we establish sharp asymptotic zero-one laws for kk-connectivity and kk-robustness, as well as the asymptotically exact probability of kk-connectivity, for any positive integer kk. The kk-connectivity property quantifies how resilient is the connectivity of a graph against node or edge failures. On the other hand, kk-robustness measures the effectiveness of local diffusion strategies (that do not use global graph topology information) in spreading information over the graph in the presence of misbehaving nodes. In addition to presenting the results under the general random intersection graph model, we consider two special cases of the general model, a binomial random intersection graph and a uniform random intersection graph, which both have numerous applications as well. For these two specialized graphs, our results on asymptotically exact probabilities of kk-connectivity and asymptotic zero-one laws for kk-robustness are also novel in the literature.Comment: This paper about random graphs appears in IEEE Conference on Decision and Control (CDC) 2014, the premier conference in control theor

    Connectivity in Secure Wireless Sensor Networks under Transmission Constraints

    Full text link
    In wireless sensor networks (WSNs), the Eschenauer-Gligor (EG) key pre-distribution scheme is a widely recognized way to secure communications. Although connectivity properties of secure WSNs with the EG scheme have been extensively investigated, few results address physical transmission constraints. These constraints reflect real-world implementations of WSNs in which two sensors have to be within a certain distance from each other to communicate. In this paper, we present zero-one laws for connectivity in WSNs employing the EG scheme under transmission constraints. These laws help specify the critical transmission ranges for connectivity. Our analytical findings are confirmed via numerical experiments. In addition to secure WSNs, our theoretical results are also applied to frequency hopping in wireless networks.Comment: Full version of a paper published in Annual Allerton Conference on Communication, Control, and Computing (Allerton) 201

    k-Connectivity in Random Key Graphs with Unreliable Links

    Full text link
    Random key graphs form a class of random intersection graphs and are naturally induced by the random key predistribution scheme of Eschenauer and Gligor for securing wireless sensor network (WSN) communications. Random key graphs have received much interest recently, owing in part to their wide applicability in various domains including recommender systems, social networks, secure sensor networks, clustering and classification analysis, and cryptanalysis to name a few. In this paper, we study connectivity properties of random key graphs in the presence of unreliable links. Unreliability of the edges are captured by independent Bernoulli random variables, rendering edges of the graph to be on or off independently from each other. The resulting model is an intersection of a random key graph and an Erdos-Renyi graph, and is expected to be useful in capturing various real-world networks; e.g., with secure WSN applications in mind, link unreliability can be attributed to harsh environmental conditions severely impairing transmissions. We present conditions on how to scale this model's parameters so that i) the minimum node degree in the graph is at least k, and ii) the graph is k-connected, both with high probability as the number of nodes becomes large. The results are given in the form of zeroone laws with critical thresholds identified and shown to coincide for both graph properties. These findings improve the previous results by Rybarczyk on the k-connectivity of random key graphs (with reliable links), as well as the zero-one laws by Yagan on the 1-connectivity of random key graphs with unreliable links.Comment: Published in IEEE Transactions on Information Theor

    On Topological Properties of Wireless Sensor Networks under the q-Composite Key Predistribution Scheme with On/Off Channels

    Full text link
    The q-composite key predistribution scheme [1] is used prevalently for secure communications in large-scale wireless sensor networks (WSNs). Prior work [2]-[4] explores topological properties of WSNs employing the q-composite scheme for q = 1 with unreliable communication links modeled as independent on/off channels. In this paper, we investigate topological properties related to the node degree in WSNs operating under the q-composite scheme and the on/off channel model. Our results apply to general q and are stronger than those reported for the node degree in prior work even for the case of q being 1. Specifically, we show that the number of nodes with certain degree asymptotically converges in distribution to a Poisson random variable, present the asymptotic probability distribution for the minimum degree of the network, and establish the asymptotically exact probability for the property that the minimum degree is at least an arbitrary value. Numerical experiments confirm the validity of our analytical findings.Comment: Best Student Paper Finalist in IEEE International Symposium on Information Theory (ISIT) 201
    • …
    corecore